Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Evaluating the Model with Cross-Validation | Modeling
ML Introduction with scikit-learn
course content

Conteúdo do Curso

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

book
Challenge: Evaluating the Model with Cross-Validation

In this challenge, you will build and evaluate a model using both train-test evaluation and cross-validation. The data is an already preprocessed penguins dataset.

Here are some of the functions you will use:

Tarefa
test

Swipe to begin your solution

Your task is to create a 4-nearest neighbors classifier and first evaluate its performance using the cross-validation score. Then split the data into train-test sets, train the model on the training set, and evaluate its performance on the test set.

  1. Initialize a KNeighborsClassifier with 4 neighbors.
  2. Calculate the cross-validation scores of this model with the number of folds set to 3. You can pass an untrained model to a cross_val_score() function.
  3. Use a suitable function to split X, y.
  4. Train the model using the training set.
  5. Evaluate the model using the test set.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 5
toggle bottom row

book
Challenge: Evaluating the Model with Cross-Validation

In this challenge, you will build and evaluate a model using both train-test evaluation and cross-validation. The data is an already preprocessed penguins dataset.

Here are some of the functions you will use:

Tarefa
test

Swipe to begin your solution

Your task is to create a 4-nearest neighbors classifier and first evaluate its performance using the cross-validation score. Then split the data into train-test sets, train the model on the training set, and evaluate its performance on the test set.

  1. Initialize a KNeighborsClassifier with 4 neighbors.
  2. Calculate the cross-validation scores of this model with the number of folds set to 3. You can pass an untrained model to a cross_val_score() function.
  3. Use a suitable function to split X, y.
  4. Train the model using the training set.
  5. Evaluate the model using the test set.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 5
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt