Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Create a Complete ML Pipeline | Pipelines
ML Introduction with scikit-learn
course content

Conteúdo do Curso

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

bookCreate a Complete ML Pipeline

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Tarefa

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 6
toggle bottom row

bookCreate a Complete ML Pipeline

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Tarefa

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 6
toggle bottom row

bookCreate a Complete ML Pipeline

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Tarefa

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Now let's build a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.
To train a predictor (model), you need y to be encoded. This is done separately from the Pipeline we build for X.
Remember that LabelEncoder is used for encoding the target.

You have the same Penguins dataset.
The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.
Since the predictions will be encoded (0, 1, or 2), we will use the .inverse_transform() method of LabelEncoder to get the predictions back to 'Adelie', 'Chinstrap', or 'Gentoo'.

Tarefa

  1. Encode the y variable using the LabelEncoder.
  2. Make a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier (in that order).
  3. Train the pipe object.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 3. Capítulo 6
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt