Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Creating a Pipeline | Pipelines
ML Introduction with scikit-learn
course content

Conteúdo do Curso

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

book
Challenge: Creating a Pipeline

In this challenge, you need to put all the preprocessing steps we did together into one pipeline. The dataset is the initial penguins.csv file we started from.

The first step is to remove two useless rows. Then you will have to create a pipeline containing encoding, imputing, and scaling.

You need to encode only two columns, 'sex' and 'island'. Since you do not want to encode the entire X, you must use a ColumnTransformer. Afterward, apply the SimpleImputer and StandardScaler to the entire X.

Here is a reminder of the make_column_transformer() and make_pipeline() functions you will use.

Tarefa
test

Swipe to begin your solution

  1. Import the correct function for creating a pipeline.
  2. Make a ColumnTransformer with the OneHotEncoder applied only to columns 'sex' and 'island'.
  3. Make sure that all other columns remain untouched.
  4. Create a pipeline containing ct you just created, SimpleImputer that fills in missing values with the most frequent value and a StandardScaler as a last step.
  5. Transform the X using the pipe you created.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 4
toggle bottom row

book
Challenge: Creating a Pipeline

In this challenge, you need to put all the preprocessing steps we did together into one pipeline. The dataset is the initial penguins.csv file we started from.

The first step is to remove two useless rows. Then you will have to create a pipeline containing encoding, imputing, and scaling.

You need to encode only two columns, 'sex' and 'island'. Since you do not want to encode the entire X, you must use a ColumnTransformer. Afterward, apply the SimpleImputer and StandardScaler to the entire X.

Here is a reminder of the make_column_transformer() and make_pipeline() functions you will use.

Tarefa
test

Swipe to begin your solution

  1. Import the correct function for creating a pipeline.
  2. Make a ColumnTransformer with the OneHotEncoder applied only to columns 'sex' and 'island'.
  3. Make sure that all other columns remain untouched.
  4. Create a pipeline containing ct you just created, SimpleImputer that fills in missing values with the most frequent value and a StandardScaler as a last step.
  5. Transform the X using the pipe you created.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 4
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt