Conteúdo do Curso
ML Introduction with scikit-learn
ML Introduction with scikit-learn
LabelEncoder
The OrdinalEncoder
and OneHotEncoder
are typically used to encode features (the X
variable). However, the target variable (y
) can also be categorical.
import pandas as pd # Load the data and assign X, y variables df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') y = df['income'] # Income is a target in this dataset X = df.drop('income', axis=1) print(y) print('All values: ', y.unique())
The LabelEncoder
is used to encode the target, regardless of whether it is nominal or ordinal.
ML models do not consider the order of the target, allowing it to be encoded as any numerical values.
LabelEncoder
encodes the target to numbers 0, 1, ... .
import pandas as pd from sklearn.preprocessing import LabelEncoder # Load the data and assign X, y variables df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') y = df['income'] # Income is a target in this dataset X = df.drop('income', axis=1) # Initialize a LabelEncoder object and encode the y variable label_enc = LabelEncoder() y = label_enc.fit_transform(y) print(y) # Decode the y variable back y_decoded = label_enc.inverse_transform(y) print(y_decoded)
The code above encodes the target using LabelEncoder
and then uses the .inverse_transform()
method to convert it back to the original representation.
Obrigado pelo seu feedback!