Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda LabelEncoder | Preprocessing Data with Scikit-learn
ML Introduction with scikit-learn
course content

Conteúdo do Curso

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

book
LabelEncoder

The OrdinalEncoder and OneHotEncoder are typically used to encode features (the X variable). However, the target variable (y) can also be categorical.

123456789
import pandas as pd # Load the data and assign X, y variables df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') y = df['income'] # Income is a target in this dataset X = df.drop('income', axis=1) print(y) print('All values: ', y.unique())
copy

The LabelEncoder is used to encode the target, regardless of whether it is nominal or ordinal.

ML models do not consider the order of the target, allowing it to be encoded as any numerical values. LabelEncoder encodes the target to numbers 0, 1, ... .

1234567891011121314
import pandas as pd from sklearn.preprocessing import LabelEncoder # Load the data and assign X, y variables df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') y = df['income'] # Income is a target in this dataset X = df.drop('income', axis=1) # Initialize a LabelEncoder object and encode the y variable label_enc = LabelEncoder() y = label_enc.fit_transform(y) print(y) # Decode the y variable back y_decoded = label_enc.inverse_transform(y) print(y_decoded)
copy

The code above encodes the target using LabelEncoder and then uses the .inverse_transform() method to convert it back to the original representation.

Choose the correct statement.

Choose the correct statement.

Selecione a resposta correta

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 7
We're sorry to hear that something went wrong. What happened?
some-alt