Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using AdaBoost Classifier | Commonly Used Boosting Models
Ensemble Learning
course content

Conteúdo do Curso

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

bookChallenge: Solving Task Using AdaBoost Classifier

Tarefa

The load_wine dataset is a classic example used for classification tasks. It consists of 178 samples, each representing a different wine cultivar. The dataset comprises 13 numerical attributes that describe various chemical characteristics of the wines, including features like alcohol content, malic acid concentration, and ash content. The target variable consists of three distinct classes representing the three different cultivars.

Your task is to use AdaBoost Classifier to solve the classification problem on the load_wine dataset:

  1. Split data into train and test sets.
  2. Use the AdaBoostClassifier() constructor to create the model with 50 base estimators.

    Note

    If we don't specify the base model of AdaBoostClassifer, the Decision Tree Classifier will be used by default.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 2
toggle bottom row

bookChallenge: Solving Task Using AdaBoost Classifier

Tarefa

The load_wine dataset is a classic example used for classification tasks. It consists of 178 samples, each representing a different wine cultivar. The dataset comprises 13 numerical attributes that describe various chemical characteristics of the wines, including features like alcohol content, malic acid concentration, and ash content. The target variable consists of three distinct classes representing the three different cultivars.

Your task is to use AdaBoost Classifier to solve the classification problem on the load_wine dataset:

  1. Split data into train and test sets.
  2. Use the AdaBoostClassifier() constructor to create the model with 50 base estimators.

    Note

    If we don't specify the base model of AdaBoostClassifer, the Decision Tree Classifier will be used by default.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 2
toggle bottom row

bookChallenge: Solving Task Using AdaBoost Classifier

Tarefa

The load_wine dataset is a classic example used for classification tasks. It consists of 178 samples, each representing a different wine cultivar. The dataset comprises 13 numerical attributes that describe various chemical characteristics of the wines, including features like alcohol content, malic acid concentration, and ash content. The target variable consists of three distinct classes representing the three different cultivars.

Your task is to use AdaBoost Classifier to solve the classification problem on the load_wine dataset:

  1. Split data into train and test sets.
  2. Use the AdaBoostClassifier() constructor to create the model with 50 base estimators.

    Note

    If we don't specify the base model of AdaBoostClassifer, the Decision Tree Classifier will be used by default.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Tarefa

The load_wine dataset is a classic example used for classification tasks. It consists of 178 samples, each representing a different wine cultivar. The dataset comprises 13 numerical attributes that describe various chemical characteristics of the wines, including features like alcohol content, malic acid concentration, and ash content. The target variable consists of three distinct classes representing the three different cultivars.

Your task is to use AdaBoost Classifier to solve the classification problem on the load_wine dataset:

  1. Split data into train and test sets.
  2. Use the AdaBoostClassifier() constructor to create the model with 50 base estimators.

    Note

    If we don't specify the base model of AdaBoostClassifer, the Decision Tree Classifier will be used by default.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 3. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt