Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using Stacking Classifier | Commonly Used Stacking Models
Ensemble Learning
course content

Conteúdo do Curso

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

book
Challenge: Solving Task Using Stacking Classifier

Tarefa
test

Swipe to show code editor

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center'` dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 2
toggle bottom row

book
Challenge: Solving Task Using Stacking Classifier

Tarefa
test

Swipe to show code editor

The 'blood-transfusion-service-center' dataset is a dataset that contains information related to blood donation. It's often used as a binary classification task to predict whether a blood donor will donate blood again. The dataset includes several features that provide insights into the donor's history and characteristics.

Your task is to solve a classification task using the 'blood-transfusion-service-center'` dataset:

  1. Use 3 different LogisticRegression models as base models. Each model must have different regularization parameters: 0.1, 1, and 10, respectively.
  2. Use MLPClassifier as meta-model of an ensemble.
  3. Create a base_models list containing all base models of the ensemble.
  4. Finally, create a StackingClassifier model with specified base models and meta-model.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt