Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Structure of Spark | Spark Basics
Introduction to Big Data with Apache Spark in Python

bookStructure of Spark

Apache Spark comprises several key components, each designed to handle different types of data processing tasks:

  • Spark Core - the foundation of Spark, providing basic functionalities like task scheduling, memory management, and fault tolerance;
  • Spark SQL - enables querying of structured data using SQL or DataFrame APIs and integrates with various data sources (e.g., Hive, Avro, Parquet);
  • Spark Streaming - allows to process real-time data streams with micro-batch processing;
  • MLlib - a library for scalable machine learning algorithms, including classification, regression, clustering, and collaborative filtering.
  • GraphX - provides a framework for graph processing and analytics, supporting operations like graph traversal and computation.

Spark operates on a cluster architecture that consists of a master node and worker nodes.

The master node manages job scheduling and resource allocation, while worker nodes execute tasks and store data.

Basic Workflow:

  1. Submit Application - users submit Spark applications to a cluster manager (e.g., YARN, Mesos, or Kubernetes);
  2. Job Scheduling - the cluster manager schedules the job and distributes tasks across worker nodes;
  3. Task Execution - worker nodes execute the tasks, performing computations on data stored in memory or on disk;
  4. Result Collection - the results of the tasks are collected and returned to the user.

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 2

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Pergunte-me perguntas sobre este assunto

Resumir este capítulo

Mostrar exemplos do mundo real

Awesome!

Completion rate improved to 7.14

bookStructure of Spark

Deslize para mostrar o menu

Apache Spark comprises several key components, each designed to handle different types of data processing tasks:

  • Spark Core - the foundation of Spark, providing basic functionalities like task scheduling, memory management, and fault tolerance;
  • Spark SQL - enables querying of structured data using SQL or DataFrame APIs and integrates with various data sources (e.g., Hive, Avro, Parquet);
  • Spark Streaming - allows to process real-time data streams with micro-batch processing;
  • MLlib - a library for scalable machine learning algorithms, including classification, regression, clustering, and collaborative filtering.
  • GraphX - provides a framework for graph processing and analytics, supporting operations like graph traversal and computation.

Spark operates on a cluster architecture that consists of a master node and worker nodes.

The master node manages job scheduling and resource allocation, while worker nodes execute tasks and store data.

Basic Workflow:

  1. Submit Application - users submit Spark applications to a cluster manager (e.g., YARN, Mesos, or Kubernetes);
  2. Job Scheduling - the cluster manager schedules the job and distributes tasks across worker nodes;
  3. Task Execution - worker nodes execute the tasks, performing computations on data stored in memory or on disk;
  4. Result Collection - the results of the tasks are collected and returned to the user.

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 2
some-alt