Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Combined Transformations of a Vector | Linear Algebra Foundations
Mathematics for Data Science

bookChallenge: Combined Transformations of a Vector

Apply a scaling transformation and a 90° rotation to a 2D vector using Python and matrix multiplication. Visualize the result with arrows and coordinate labels from the origin.

You're working with a vector:

v=[23]\vec{v} = \begin{bmatrix}2 \\ 3\end{bmatrix}

You will:

  1. Apply a scaling matrix:

    S=[2000.5]S = \begin{bmatrix}2 & 0 \\ 0 & 0.5\end{bmatrix}
  2. Apply a rotation matrix:

    R=[23]R = \begin{bmatrix}2 \\ 3\end{bmatrix}
  3. Combine them as:

R(Sv)R \cdot (S \cdot \vec{v})

This simulates what happens when a vector is first scaled and then rotated.

Tarefa

Swipe to start coding

  1. Complete the Python code below to:

    • Define the original vector;

    • Apply the scaling and rotation matrices;

    • Plot all vectors with labeled tips and coordinate axes;

  2. Verify that the output vectors are correct.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 7
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Combined Transformations of a Vector

Deslize para mostrar o menu

Apply a scaling transformation and a 90° rotation to a 2D vector using Python and matrix multiplication. Visualize the result with arrows and coordinate labels from the origin.

You're working with a vector:

v=[23]\vec{v} = \begin{bmatrix}2 \\ 3\end{bmatrix}

You will:

  1. Apply a scaling matrix:

    S=[2000.5]S = \begin{bmatrix}2 & 0 \\ 0 & 0.5\end{bmatrix}
  2. Apply a rotation matrix:

    R=[23]R = \begin{bmatrix}2 \\ 3\end{bmatrix}
  3. Combine them as:

R(Sv)R \cdot (S \cdot \vec{v})

This simulates what happens when a vector is first scaled and then rotated.

Tarefa

Swipe to start coding

  1. Complete the Python code below to:

    • Define the original vector;

    • Apply the scaling and rotation matrices;

    • Plot all vectors with labeled tips and coordinate axes;

  2. Verify that the output vectors are correct.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

close

Awesome!

Completion rate improved to 1.89
Seção 4. Capítulo 7
single

single

some-alt