Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Solving a Linear System with LU Decomposition | Linear Algebra Foundations
Mathematics for Data Science

bookChallenge: Solving a Linear System with LU Decomposition

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Tarefa

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 10
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Solving a Linear System with LU Decomposition

Deslize para mostrar o menu

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Tarefa

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

close

Awesome!

Completion rate improved to 1.89
Seção 4. Capítulo 10
single

single

some-alt