Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda What is DP | Intro to Dynamic Programming
Dynamic Programming

Deslize para mostrar o menu

book
What is DP

Dynamic programming is a programming paradigm for a massive class of problems. It solves the problem by partitioning it into smaller subproblems and solving it to avoid double computing the same results. Thus, the optimal solution of the main problem depends on the optimal solution of its subproblems.

The simplest (even classic) example is solving the Fibonacci Numbers problem - find the n-th Fibonacci number. As you know, each next Fibonacci number is a sum of the previous two Fibonacci numbers. So, if we have some function fib(n) that returns n-th Fibonacci numbers, we can implement it like this:

12
def fib(n): return fib(n-1) + fib(n-2)
copy

Thus, to solve the problem of the n-th Fibonacci number, you should solve the fib(n-1) and fib(n-2) subproblems first. But we can solve both of these subproblems in the same way.

You can note that this recursion has no bottom yet, so we have to add the stop condition:

1234
def fib(n): if n <= 1: # Bottom return n return fib(n-1) + fib(n-2)
copy

You'll find some info about the main DP properties in the next two chapters.

Tarefa

Swipe to start coding

  1. Following the example, implement the function fib(n).
  2. Make function calls to check how it works.

The function calls are already in the task code; do not change them. Edit the fib(n) function only.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 1
Sentimos muito que algo saiu errado. O que aconteceu?

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
What is DP

Dynamic programming is a programming paradigm for a massive class of problems. It solves the problem by partitioning it into smaller subproblems and solving it to avoid double computing the same results. Thus, the optimal solution of the main problem depends on the optimal solution of its subproblems.

The simplest (even classic) example is solving the Fibonacci Numbers problem - find the n-th Fibonacci number. As you know, each next Fibonacci number is a sum of the previous two Fibonacci numbers. So, if we have some function fib(n) that returns n-th Fibonacci numbers, we can implement it like this:

12
def fib(n): return fib(n-1) + fib(n-2)
copy

Thus, to solve the problem of the n-th Fibonacci number, you should solve the fib(n-1) and fib(n-2) subproblems first. But we can solve both of these subproblems in the same way.

You can note that this recursion has no bottom yet, so we have to add the stop condition:

1234
def fib(n): if n <= 1: # Bottom return n return fib(n-1) + fib(n-2)
copy

You'll find some info about the main DP properties in the next two chapters.

Tarefa

Swipe to start coding

  1. Following the example, implement the function fib(n).
  2. Make function calls to check how it works.

The function calls are already in the task code; do not change them. Edit the fib(n) function only.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 1
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt