Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Poisson Distribution 1/3 | Distributions
Probability Theory Update

Deslize para mostrar o menu

book
Poisson Distribution 1/3

What is it?

This distribution describes the probability that events occur in a fixed interval of time or space if they happen with a known constant mean rate and independently.

Examples:

  • Website visitors per month.

  • The number of meteors that will fall per hour.

  • The number of people die because of specific diseases.

Lambda in Poisson distribution:

Lambda is the key parameter of the distribution that represents its expected value. It can be defined as a mean number of events within a specified time or space.

Example with lambda:

Lambda represents the expected value; if our expected value of customers visiting the app per day is 10000, then the lambda, in this case, equals 10000.

123456789
import scipy.stats as stats import matplotlib.pyplot as plt import seaborn as sns # Simulating Poisson distribution data = stats.poisson.rvs(1000, size = 1000) sns.histplot(data = data) plt.show()
copy
  • .rvs() - function that is used to create a random distribution. The first argument is lambda and the second is the size of the sample. - .poisson - referring to the poisson object to work with Poisson distribution.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 1
Sentimos muito que algo saiu errado. O que aconteceu?

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Poisson Distribution 1/3

What is it?

This distribution describes the probability that events occur in a fixed interval of time or space if they happen with a known constant mean rate and independently.

Examples:

  • Website visitors per month.

  • The number of meteors that will fall per hour.

  • The number of people die because of specific diseases.

Lambda in Poisson distribution:

Lambda is the key parameter of the distribution that represents its expected value. It can be defined as a mean number of events within a specified time or space.

Example with lambda:

Lambda represents the expected value; if our expected value of customers visiting the app per day is 10000, then the lambda, in this case, equals 10000.

123456789
import scipy.stats as stats import matplotlib.pyplot as plt import seaborn as sns # Simulating Poisson distribution data = stats.poisson.rvs(1000, size = 1000) sns.histplot(data = data) plt.show()
copy
  • .rvs() - function that is used to create a random distribution. The first argument is lambda and the second is the size of the sample. - .poisson - referring to the poisson object to work with Poisson distribution.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 1
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt