Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Cumulative Distribution Function (CDF) 1/2 | Probability Functions
Probability Theory Update
course content

Conteúdo do Curso

Probability Theory Update

Probability Theory Update

1. Probability Basics
2. Statistical Dependence
3. Learn Crucial Terms
4. Probability Functions
5. Distributions

bookCumulative Distribution Function (CDF) 1/2

What is it?

This function calculates the probability that the random variable X will take the value less than or equal to x. Example:

Calculate the probability that we will have success with the fair coin (the chance of getting head or tail is 50%) in at least in 4 out of 15 trials. We assume that success means getting a head.

Python realization:

1234567891011121314
# Import required library import scipy.stats as stats # The desired number of success trial x = 4 # The number of attempts n = 15 # The probability of getting a success p = 0.5 # The resulting probability probability = stats.binom.cdf(x, n, p) print("The probability is", probability * 100, "%")
copy

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 4
toggle bottom row

bookCumulative Distribution Function (CDF) 1/2

What is it?

This function calculates the probability that the random variable X will take the value less than or equal to x. Example:

Calculate the probability that we will have success with the fair coin (the chance of getting head or tail is 50%) in at least in 4 out of 15 trials. We assume that success means getting a head.

Python realization:

1234567891011121314
# Import required library import scipy.stats as stats # The desired number of success trial x = 4 # The number of attempts n = 15 # The probability of getting a success p = 0.5 # The resulting probability probability = stats.binom.cdf(x, n, p) print("The probability is", probability * 100, "%")
copy

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 4
toggle bottom row

bookCumulative Distribution Function (CDF) 1/2

What is it?

This function calculates the probability that the random variable X will take the value less than or equal to x. Example:

Calculate the probability that we will have success with the fair coin (the chance of getting head or tail is 50%) in at least in 4 out of 15 trials. We assume that success means getting a head.

Python realization:

1234567891011121314
# Import required library import scipy.stats as stats # The desired number of success trial x = 4 # The number of attempts n = 15 # The probability of getting a success p = 0.5 # The resulting probability probability = stats.binom.cdf(x, n, p) print("The probability is", probability * 100, "%")
copy

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

What is it?

This function calculates the probability that the random variable X will take the value less than or equal to x. Example:

Calculate the probability that we will have success with the fair coin (the chance of getting head or tail is 50%) in at least in 4 out of 15 trials. We assume that success means getting a head.

Python realization:

1234567891011121314
# Import required library import scipy.stats as stats # The desired number of success trial x = 4 # The number of attempts n = 15 # The probability of getting a success p = 0.5 # The resulting probability probability = stats.binom.cdf(x, n, p) print("The probability is", probability * 100, "%")
copy

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 4. Capítulo 4
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt