Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda StandardScaler | Scaling Numerical Data
Introduction to Scikit Learn

Deslize para mostrar o menu

book
StandardScaler

If the dataset is standardized, it will have a good optimization effect for many machine learning algorithms. To get standardized data you have to use the next formula:

Here we have the following values:

  • x_scaled - standardized feature element,

  • x - unnormalized feature element,

  • mean - mean value,

  • std - standard deviation value.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

The main property of standardized data is that this data: mean = 0 and standard deviation = 1.

1
from sklearn.preprocessing import StandarsScaler
copy

This function works like the previous two, namely MinMaxScaler, MaxAbsScaler, and it works in a similar way. So, in this chapter there is no example of using StandartScaler function. You will use it on your own in the below task.

Let's try! If you have some difficulties, please, use hints.

Tarefa

Swipe to start coding

You have wine dataset, we have worked with it recently. Please, standardize this data. To check, if StandardScaler function works correct, please dispay the mean and standard deviation. Pay attention: mean will be equal to 0 and std to 1.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 3
Sentimos muito que algo saiu errado. O que aconteceu?

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
StandardScaler

If the dataset is standardized, it will have a good optimization effect for many machine learning algorithms. To get standardized data you have to use the next formula:

Here we have the following values:

  • x_scaled - standardized feature element,

  • x - unnormalized feature element,

  • mean - mean value,

  • std - standard deviation value.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

The main property of standardized data is that this data: mean = 0 and standard deviation = 1.

1
from sklearn.preprocessing import StandarsScaler
copy

This function works like the previous two, namely MinMaxScaler, MaxAbsScaler, and it works in a similar way. So, in this chapter there is no example of using StandartScaler function. You will use it on your own in the below task.

Let's try! If you have some difficulties, please, use hints.

Tarefa

Swipe to start coding

You have wine dataset, we have worked with it recently. Please, standardize this data. To check, if StandardScaler function works correct, please dispay the mean and standard deviation. Pay attention: mean will be equal to 0 and std to 1.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 3
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt