Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Implementing Gaussian Mixture Models | GMMs
Cluster Analysis
course content

Conteúdo do Curso

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Challenge: Implementing Gaussian Mixture Models

Tarefa

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a Gaussian mixture model with 3 clusters, set random_state to 42, and store it in the gmm variable.

  • Fit the model on the dataset, predict the cluster labels and store the result in the labels variable.

  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 6. Capítulo 6
toggle bottom row

book
Challenge: Implementing Gaussian Mixture Models

Tarefa

Swipe to start coding

You are given a synthetic dataset stored in the data variable.

  • Initialize a Gaussian mixture model with 3 clusters, set random_state to 42, and store it in the gmm variable.

  • Fit the model on the dataset, predict the cluster labels and store the result in the labels variable.

  • For each cluster i, extract the points belonging to this cluster and store the result in the cluster_points variable.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 6. Capítulo 6
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt