Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Using DBSCAN Clustering to Detect Outliers | Machine Learning Techniques
Data Anomaly Detection
course content

Conteúdo do Curso

Data Anomaly Detection

Data Anomaly Detection

1. What is Anomaly Detection?
2. Statistical Methods in Anomaly Detection
3. Machine Learning Techniques

bookChallenge: Using DBSCAN Clustering to Detect Outliers

Tarefa

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 2
toggle bottom row

bookChallenge: Using DBSCAN Clustering to Detect Outliers

Tarefa

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 2
toggle bottom row

bookChallenge: Using DBSCAN Clustering to Detect Outliers

Tarefa

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Tarefa

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 3. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt