Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Peculiarity of Spectral Clustering | Spectral Clustering
Cluster Analysis in Python

Deslize para mostrar o menu

book
Peculiarity of Spectral Clustering

The result of the last chapter was great! Spectral clustering correctly figured out the structure of the clusters, unlike K-Means and K-Medoids algorithms.

Thus, spectral clustering is very useful in case of intersect/overlapping clusters or when you can not use mean points and the centers.

For example, let's explore such a case. Given the 2-D training set of points, the scatter plot for which is built below.

Seems like 4 circles, therefore 4 clusters, doesn't it? But that is what K-Means will show us.

Not what we expected to see. Let's see how will spectral clustering deal with this data.

Please note, that the spectral clustering algorithm may take a long time to perform since it is based on hard math.

Tarefa

Swipe to start coding

For the given set of 2-D points data perform a spectral clustering. Follow the next steps:

  1. Import SpectralClustering function from sklearn.cluster.
  2. Create a SpectralClustering model with 4 clusters.
  3. Fit the data and predict the labels. Save predicted labels within the 'prediction' column of data.
  4. Build scatter plot with 'x' column on the x-axis 'y' column on the y-axis for each value of 'prediction' (separate color for each value). Do not forget to display the plot.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 2
Sentimos muito que algo saiu errado. O que aconteceu?

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Peculiarity of Spectral Clustering

The result of the last chapter was great! Spectral clustering correctly figured out the structure of the clusters, unlike K-Means and K-Medoids algorithms.

Thus, spectral clustering is very useful in case of intersect/overlapping clusters or when you can not use mean points and the centers.

For example, let's explore such a case. Given the 2-D training set of points, the scatter plot for which is built below.

Seems like 4 circles, therefore 4 clusters, doesn't it? But that is what K-Means will show us.

Not what we expected to see. Let's see how will spectral clustering deal with this data.

Please note, that the spectral clustering algorithm may take a long time to perform since it is based on hard math.

Tarefa

Swipe to start coding

For the given set of 2-D points data perform a spectral clustering. Follow the next steps:

  1. Import SpectralClustering function from sklearn.cluster.
  2. Create a SpectralClustering model with 4 clusters.
  3. Fit the data and predict the labels. Save predicted labels within the 'prediction' column of data.
  4. Build scatter plot with 'x' column on the x-axis 'y' column on the y-axis for each value of 'prediction' (separate color for each value). Do not forget to display the plot.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt