Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Replace Missing Values with Interpolation | Data Cleaning
Preprocessing Data
course content

Conteúdo do Curso

Preprocessing Data

Preprocessing Data

1. Data Exploration
2. Data Cleaning
3. Data Validation
4. Normalization & Standardization
5. Data Encoding

bookReplace Missing Values with Interpolation

Another approach to deal with numerical data is using interpolation. Each NaN value will be replaced with the result of interpolation between the previous and the next entry over the column. Let's apply the interpolate() function to numeric column Age by setting the limit direction to forward. This means that linear interpolation is applied from the first line to the last.

1
data = data.interpolate(method = 'linear', limit_direction = 'forward')
copy

Tarefa

Fill the empty places in the code. Compare the data in Age column before and after using interpolation (look at the last 10 rows).

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 6
toggle bottom row

bookReplace Missing Values with Interpolation

Another approach to deal with numerical data is using interpolation. Each NaN value will be replaced with the result of interpolation between the previous and the next entry over the column. Let's apply the interpolate() function to numeric column Age by setting the limit direction to forward. This means that linear interpolation is applied from the first line to the last.

1
data = data.interpolate(method = 'linear', limit_direction = 'forward')
copy

Tarefa

Fill the empty places in the code. Compare the data in Age column before and after using interpolation (look at the last 10 rows).

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 6
toggle bottom row

bookReplace Missing Values with Interpolation

Another approach to deal with numerical data is using interpolation. Each NaN value will be replaced with the result of interpolation between the previous and the next entry over the column. Let's apply the interpolate() function to numeric column Age by setting the limit direction to forward. This means that linear interpolation is applied from the first line to the last.

1
data = data.interpolate(method = 'linear', limit_direction = 'forward')
copy

Tarefa

Fill the empty places in the code. Compare the data in Age column before and after using interpolation (look at the last 10 rows).

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Another approach to deal with numerical data is using interpolation. Each NaN value will be replaced with the result of interpolation between the previous and the next entry over the column. Let's apply the interpolate() function to numeric column Age by setting the limit direction to forward. This means that linear interpolation is applied from the first line to the last.

1
data = data.interpolate(method = 'linear', limit_direction = 'forward')
copy

Tarefa

Fill the empty places in the code. Compare the data in Age column before and after using interpolation (look at the last 10 rows).

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 2. Capítulo 6
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt