Try to Evaluate
Let’s see which model is better using the metrics we already know.
MSE:
123from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
Output:
0.28
0.27
MAE:
123from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
Output:
0.45
0.43
R-squared:
123from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
Output:
0.53
0.55
As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.
Swipe to start coding
Let’s evaluate the model from the previous task:
- [Line #30] Import
mean_squared_error
for calculating metrics fromscikit.metrics
. - [Line #31] Find MSE using method
mean_squared_error()
andY_test
,y_test_predicted2
as the parameters, assign it to the variableMSE
, round the result to second digit. - [Line #32] Print the variable
MSE
. - [Line #35] Import
r2_score
fromscikit.metrics
. - [Line #36] Find R-squared and assign it to the variable
r_squared
, round the result to second digit. - [Line #37] Print the variable
r_squared
.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Awesome!
Completion rate improved to 4.76
Try to Evaluate
Veeg om het menu te tonen
Let’s see which model is better using the metrics we already know.
MSE:
123from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
Output:
0.28
0.27
MAE:
123from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
Output:
0.45
0.43
R-squared:
123from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
Output:
0.53
0.55
As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.
Swipe to start coding
Let’s evaluate the model from the previous task:
- [Line #30] Import
mean_squared_error
for calculating metrics fromscikit.metrics
. - [Line #31] Find MSE using method
mean_squared_error()
andY_test
,y_test_predicted2
as the parameters, assign it to the variableMSE
, round the result to second digit. - [Line #32] Print the variable
MSE
. - [Line #35] Import
r2_score
fromscikit.metrics
. - [Line #36] Find R-squared and assign it to the variable
r_squared
, round the result to second digit. - [Line #37] Print the variable
r_squared
.
Oplossing
Bedankt voor je feedback!
Awesome!
Completion rate improved to 4.76single