Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Compare Ridge and Lasso on Real Data | Regularization Fundamentals
Feature Selection and Regularization Techniques

bookChallenge: Compare Ridge and Lasso on Real Data

Taak

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Compare Ridge and Lasso on Real Data

Veeg om het menu te tonen

Taak

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
single

single

some-alt