Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Edge Detection | Image Processing with OpenCV
Computer Vision Essentials

Veeg om het menu te tonen

book
Edge Detection

Edge Detection

Edges represent sudden changes in pixel intensity, which usually correspond to object boundaries. Detecting edges helps in shape recognition and segmentation.

Sobel Edge Detection

The Sobel operator calculates gradients (changes in intensity) in both the X and Y directions, helping detect horizontal and vertical edges.

Canny Edge Detection

The Canny Edge Detector is a multi-stage algorithm that provides more accurate edges by:

  1. Applying Gaussian blur to remove noise.

  2. Finding intensity gradients using Sobel filters.

  3. Suppressing weak edges.

  4. Using double thresholding and edge tracking.

A comparison of edge detection methods:

Taak

Swipe to start coding

You are given an image:

  • Convert image to grayscale and store in gray_image;
  • Apply Sobel filter on X and Y directions (output depth cv2.CV_64F and kernel size 3) and store in sobel_x, sobel_y accordingly;
  • Combine Sobel-filtered directions in sobel_img;
  • Apply a Canny filter with a threshold from 200 to 300 and store in canny_img.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 7

Vraag AI

expand
ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

book
Edge Detection

Edge Detection

Edges represent sudden changes in pixel intensity, which usually correspond to object boundaries. Detecting edges helps in shape recognition and segmentation.

Sobel Edge Detection

The Sobel operator calculates gradients (changes in intensity) in both the X and Y directions, helping detect horizontal and vertical edges.

Canny Edge Detection

The Canny Edge Detector is a multi-stage algorithm that provides more accurate edges by:

  1. Applying Gaussian blur to remove noise.

  2. Finding intensity gradients using Sobel filters.

  3. Suppressing weak edges.

  4. Using double thresholding and edge tracking.

A comparison of edge detection methods:

Taak

Swipe to start coding

You are given an image:

  • Convert image to grayscale and store in gray_image;
  • Apply Sobel filter on X and Y directions (output depth cv2.CV_64F and kernel size 3) and store in sobel_x, sobel_y accordingly;
  • Combine Sobel-filtered directions in sobel_img;
  • Apply a Canny filter with a threshold from 200 to 300 and store in canny_img.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 7
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt