Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge | Polynomial Regression
Linear Regression for ML

Veeg om het menu te tonen

book
Challenge

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Let's build a scatterplot of this data.

1234567
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4)
copy

Fitting a straight line to this data may not be a great choice.
The price gets higher for either brand-new or really old houses.
Fitting a parabola looks like a better choice. And that's what you will do in this challenge.

The task is to build a Polynomial Regression of degree 2 using a pipeline, as was shown in a previous chapter. Here is a list of the classes and functions from sklearn that you will need.

carousel-imgcarousel-imgcarousel-img
Taak

Swipe to start coding

  1. Create a model using the make_pipeline function.
    As function arguments, pass the instances of classes that:
    • adds polynomial features of a degree n (don't forget to set the include_bias to False).
    • performs Linear Regression.
  2. Train the model.
  3. Predict the target for X_new.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 6

Vraag AI

expand
ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

book
Challenge

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Let's build a scatterplot of this data.

1234567
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4)
copy

Fitting a straight line to this data may not be a great choice.
The price gets higher for either brand-new or really old houses.
Fitting a parabola looks like a better choice. And that's what you will do in this challenge.

The task is to build a Polynomial Regression of degree 2 using a pipeline, as was shown in a previous chapter. Here is a list of the classes and functions from sklearn that you will need.

carousel-imgcarousel-imgcarousel-img
Taak

Swipe to start coding

  1. Create a model using the make_pipeline function.
    As function arguments, pass the instances of classes that:
    • adds polynomial features of a degree n (don't forget to set the include_bias to False).
    • performs Linear Regression.
  2. Train the model.
  3. Predict the target for X_new.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 6
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt