Challenge: Simulating ARIMA Processes
Swipe to start coding
Your goal is to simulate an ARIMA time series using the ArmaProcess class from statsmodels.
You will generate artificial data, visualize it, and explore how the AR (p) and MA (q) parameters affect the behavior of the series.
Perform the following steps:
-
Import the
ArmaProcessclass fromstatsmodels.tsa.arima_process. -
Define AR and MA parameters for an ARIMA(2,0,1) process:
- AR coefficients =
[1, -0.75, 0.25] - MA coefficients =
[1, 0.65]
- AR coefficients =
-
Initialize an ARMA process with these parameters.
-
Simulate 500 samples using
.generate_sample(nsample=500). -
Plot the resulting series using
matplotlib. -
Display the first 10 values of the generated time series.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Awesome!
Completion rate improved to 6.67
Challenge: Simulating ARIMA Processes
Veeg om het menu te tonen
Swipe to start coding
Your goal is to simulate an ARIMA time series using the ArmaProcess class from statsmodels.
You will generate artificial data, visualize it, and explore how the AR (p) and MA (q) parameters affect the behavior of the series.
Perform the following steps:
-
Import the
ArmaProcessclass fromstatsmodels.tsa.arima_process. -
Define AR and MA parameters for an ARIMA(2,0,1) process:
- AR coefficients =
[1, -0.75, 0.25] - MA coefficients =
[1, 0.65]
- AR coefficients =
-
Initialize an ARMA process with these parameters.
-
Simulate 500 samples using
.generate_sample(nsample=500). -
Plot the resulting series using
matplotlib. -
Display the first 10 values of the generated time series.
Oplossing
Bedankt voor je feedback!
single