Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Choosing the Best K Value | k-NN Classifier
Classification with Python
course content

Cursusinhoud

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

book
Challenge: Choosing the Best K Value

As shown in the previous chapters, the model's predictions can vary depending on the value of k (the number of neighbors). When building a k-NN model, it's important to choose the k value that gives the best performance.

A common approach is to use cross-validation to evaluate model performance. You can run a loop and calculate cross-validation scores for a range of k values, then select the one with the highest score. This is the most widely used method.

To perform this, sklearn offers a convenient tool: the GridSearchCV class.

The param_grid parameter takes a dictionary where the keys are parameter names and the values are lists of options to try. For example, to test values from 1 to 99 for n_neighbors, you can write:

python

Calling the .fit(X, y) method on the GridSearchCV object will search through the parameter grid to find the best parameters and then re-train the model on the entire dataset using those best parameters.

You can access the best score using the .best_score_ attribute and make predictions with the optimized model using the .predict() method. Similarly, you can retrieve the best model itself using the .best_estimator_ attribute.

Taak

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize param_grid as a dictionary containing the n_neighbors parameter with the values [3, 9, 18, 27].
  • Create a GridSearchCV object using param_grid with 4-fold cross-validation, train it, and store it in the grid_search variable.
  • Retrieve the best model from grid_search and store it in the best_model variable.
  • Retrieve the score of the best model and store it in the best_score variable.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 7
toggle bottom row

book
Challenge: Choosing the Best K Value

As shown in the previous chapters, the model's predictions can vary depending on the value of k (the number of neighbors). When building a k-NN model, it's important to choose the k value that gives the best performance.

A common approach is to use cross-validation to evaluate model performance. You can run a loop and calculate cross-validation scores for a range of k values, then select the one with the highest score. This is the most widely used method.

To perform this, sklearn offers a convenient tool: the GridSearchCV class.

The param_grid parameter takes a dictionary where the keys are parameter names and the values are lists of options to try. For example, to test values from 1 to 99 for n_neighbors, you can write:

python

Calling the .fit(X, y) method on the GridSearchCV object will search through the parameter grid to find the best parameters and then re-train the model on the entire dataset using those best parameters.

You can access the best score using the .best_score_ attribute and make predictions with the optimized model using the .predict() method. Similarly, you can retrieve the best model itself using the .best_estimator_ attribute.

Taak

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize param_grid as a dictionary containing the n_neighbors parameter with the values [3, 9, 18, 27].
  • Create a GridSearchCV object using param_grid with 4-fold cross-validation, train it, and store it in the grid_search variable.
  • Retrieve the best model from grid_search and store it in the best_model variable.
  • Retrieve the score of the best model and store it in the best_score variable.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 7
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt