Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Classifying Inseparable Data | Logistic Regression
Classification with Python
course content

Cursusinhoud

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

book
Challenge: Classifying Inseparable Data

You will use the following dataset with two features:

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/circles.csv') print(df.head())
copy

If you run the code below and take a look at the resulting scatter plot, you'll see that the dataset is not linearly separable:

123456
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/circles.csv') plt.scatter(df['X1'], df['X2'], c=df['y']) plt.show()
copy

Let's use cross-validation to evaluate a simple logistic regression on this data:

123456789101112131415161718
import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/circles.csv') X = df[['X1', 'X2']] y = df['y'] X = StandardScaler().fit_transform(X) lr = LogisticRegression().fit(X, y) y_pred = lr.predict(X) plt.scatter(df['X1'], df['X2'], c=y_pred) plt.show() print(f'Cross-validation accuracy: {cross_val_score(lr, X, y).mean():.2f}')
copy

As you can see, regular Logistic Regression is not suited for this task. Using polynomial regression may help improve the model's performance. Additionally, employing GridSearchCV allows you to find the optimal C parameter for better accuracy.

This task also uses the Pipeline class. You can think of it as a sequence of preprocessing steps. Its .fit_transform() method sequentially applies .fit_transform() to each step in the pipeline.

Taak

Swipe to start coding

You are given a dataset described as a DataFrame in the df variable.

  • Create a pipeline that will hold the polynomial features of degree 2 of X and be scaled and store the resulting pipeline in the pipe variable.
  • Create a param_grid dictionary to with values [0.01, 0.1, 1, 10, 100] of the C hyperparameter.
  • Initialize and train a GridSearchCV object and store the trained object in the grid_cv variable.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
toggle bottom row

book
Challenge: Classifying Inseparable Data

You will use the following dataset with two features:

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/circles.csv') print(df.head())
copy

If you run the code below and take a look at the resulting scatter plot, you'll see that the dataset is not linearly separable:

123456
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/circles.csv') plt.scatter(df['X1'], df['X2'], c=df['y']) plt.show()
copy

Let's use cross-validation to evaluate a simple logistic regression on this data:

123456789101112131415161718
import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/circles.csv') X = df[['X1', 'X2']] y = df['y'] X = StandardScaler().fit_transform(X) lr = LogisticRegression().fit(X, y) y_pred = lr.predict(X) plt.scatter(df['X1'], df['X2'], c=y_pred) plt.show() print(f'Cross-validation accuracy: {cross_val_score(lr, X, y).mean():.2f}')
copy

As you can see, regular Logistic Regression is not suited for this task. Using polynomial regression may help improve the model's performance. Additionally, employing GridSearchCV allows you to find the optimal C parameter for better accuracy.

This task also uses the Pipeline class. You can think of it as a sequence of preprocessing steps. Its .fit_transform() method sequentially applies .fit_transform() to each step in the pipeline.

Taak

Swipe to start coding

You are given a dataset described as a DataFrame in the df variable.

  • Create a pipeline that will hold the polynomial features of degree 2 of X and be scaled and store the resulting pipeline in the pipe variable.
  • Create a param_grid dictionary to with values [0.01, 0.1, 1, 10, 100] of the C hyperparameter.
  • Initialize and train a GridSearchCV object and store the trained object in the grid_cv variable.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt