Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Clean Messy Reviews | Advanced Text Cleaning
Data Cleaning Techniques in Python

bookChallenge: Clean Messy Reviews

Taak

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

bookChallenge: Clean Messy Reviews

Veeg om het menu te tonen

Taak

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
single

single

some-alt