Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer DataFrame | The Very First Steps
Pandas First Steps
course content

Cursusinhoud

Pandas First Steps

Pandas First Steps

1. The Very First Steps
2. Reading Files in Pandas
3. Analyzing the Data

book
DataFrame

To recap, a Series is a one-dimensional data structure, similar to a list or a column in a spreadsheet. It holds data of the same type, with each element labeled by an index.

In contrast, a DataFrame is a versatile two-dimensional structure in Pandas, similar to a table or spreadsheet, with rows and columns. It can hold data of different types, with each column functioning as a Series. Like a spreadsheet, a DataFrame includes both an index and column labels, making it ideal for handling large, structured datasets.

To create a DataFrame object, you'll need to use a dictionary in conjunction with the .DataFrame() constructor.

123456
import pandas as pd people_data = {'name' : ['Ann', 'Alex', 'Kevin', 'Kate'], 'age' : [35, 12, 24, 45]} people_df = pd.DataFrame(people_data) print(people_df)
copy

Note

If you want to explicitly indicate that the variable represents a DataFrame, you can include df in the variable name, as shown in this example (people_df).

Taak

Swipe to start coding

You are given a dictionary named animals_data.

  • Create a DataFrame named animals using this dictionary.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
toggle bottom row

book
DataFrame

To recap, a Series is a one-dimensional data structure, similar to a list or a column in a spreadsheet. It holds data of the same type, with each element labeled by an index.

In contrast, a DataFrame is a versatile two-dimensional structure in Pandas, similar to a table or spreadsheet, with rows and columns. It can hold data of different types, with each column functioning as a Series. Like a spreadsheet, a DataFrame includes both an index and column labels, making it ideal for handling large, structured datasets.

To create a DataFrame object, you'll need to use a dictionary in conjunction with the .DataFrame() constructor.

123456
import pandas as pd people_data = {'name' : ['Ann', 'Alex', 'Kevin', 'Kate'], 'age' : [35, 12, 24, 45]} people_df = pd.DataFrame(people_data) print(people_df)
copy

Note

If you want to explicitly indicate that the variable represents a DataFrame, you can include df in the variable name, as shown in this example (people_df).

Taak

Swipe to start coding

You are given a dictionary named animals_data.

  • Create a DataFrame named animals using this dictionary.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt