Challenge 1
Taak
Swipe to start coding
In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.
- Read the dataset
'adult-census.csv' - Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the
np.nanobject - Remove rows with missing values
- Let's start with processing categorical data - columns
'workclass','sex'Use a one-hot encoding method to encode them - For numeric data (
'age','hours-per-week'), you will need to scale the data - Print processed data
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 6. Hoofdstuk 1
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Suggested prompts:
Vat dit hoofdstuk samen
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.33
Challenge 1
Veeg om het menu te tonen
Taak
Swipe to start coding
In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.
- Read the dataset
'adult-census.csv' - Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the
np.nanobject - Remove rows with missing values
- Let's start with processing categorical data - columns
'workclass','sex'Use a one-hot encoding method to encode them - For numeric data (
'age','hours-per-week'), you will need to scale the data - Print processed data
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 6. Hoofdstuk 1
single