Challenge: Random Forest
Taak
Swipe to start coding
Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:
- Load the dataset using
sklearn.datasets.load_iris(). - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train a RandomForestClassifier with:
n_estimators=100,max_depth=4,random_state=42.
- Predict labels on the test set.
- Compute and print the accuracy score of your model.
- Store the trained model in a variable named
rf_modeland predictions iny_pred.
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 2. Hoofdstuk 4
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Suggested prompts:
Can you explain this in simpler terms?
What are the main points I should remember?
Can you give me an example?
Geweldig!
Completion tarief verbeterd naar 7.14
Challenge: Random Forest
Veeg om het menu te tonen
Taak
Swipe to start coding
Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:
- Load the dataset using
sklearn.datasets.load_iris(). - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train a RandomForestClassifier with:
n_estimators=100,max_depth=4,random_state=42.
- Predict labels on the test set.
- Compute and print the accuracy score of your model.
- Store the trained model in a variable named
rf_modeland predictions iny_pred.
Oplossing
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 2. Hoofdstuk 4
single