Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Stacking Model | Stacking and Voting Ensembles
Ensemble Learning Techniques with Python

bookChallenge: Stacking Model

Taak

Swipe to start coding

In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.

Your task:

  1. Load the Breast Cancer dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the dataset into training and testing sets (test_size=0.3, random_state=42).
  3. Create a stacking ensemble with:
    • Base estimators:
      • Decision Tree (DecisionTreeClassifier(max_depth=3, random_state=42))
      • Support Vector Classifier (SVC(probability=True, random_state=42))
    • Final estimator:
      • Logistic Regression (LogisticRegression(random_state=42))
  4. Train your model on the training data.
  5. Evaluate the model on the test data using accuracy score.
  6. Print the mode's accuracy.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Stacking Model

Veeg om het menu te tonen

Taak

Swipe to start coding

In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.

Your task:

  1. Load the Breast Cancer dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the dataset into training and testing sets (test_size=0.3, random_state=42).
  3. Create a stacking ensemble with:
    • Base estimators:
      • Decision Tree (DecisionTreeClassifier(max_depth=3, random_state=42))
      • Support Vector Classifier (SVC(probability=True, random_state=42))
    • Final estimator:
      • Logistic Regression (LogisticRegression(random_state=42))
  4. Train your model on the training data.
  5. Evaluate the model on the test data using accuracy score.
  6. Print the mode's accuracy.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 3
single

single

some-alt