Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge 1: Visualizing Distributions | Seaborn
Data Science Interview Challenge
course content

Cursusinhoud

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 1: Visualizing Distributions

Understanding how data is distributed is fundamental in the data analysis process. Distributions help us to visualize the central tendencies, variability, and the presence of any outliers in our dataset. Seaborn, a statistical plotting library built on top of Matplotlib, provides a suite of tools that makes visualizing distributions a breeze.

The various plots and tools under Seaborn's distribution utilities can:

  • Examine the distribution of a dataset.
  • Visualize the relationship between multiple variables.
  • Display the underlying probability distributions of datasets.

Using Seaborn to create distribution plots ensures that the viewer can get a comprehensive view of the data's distribution and its characteristics.

Taak

Swipe to start coding

Using Seaborn, visualize the distribution of a dataset:

  1. Plot a univariate distribution of data using a histogram and overlay it with a kernel density estimate (KDE).
  2. Visualize the bivariate distribution between two variables using a scatter plot and include a KDE plot to see the data's density.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 5. Hoofdstuk 1
toggle bottom row

book
Challenge 1: Visualizing Distributions

Understanding how data is distributed is fundamental in the data analysis process. Distributions help us to visualize the central tendencies, variability, and the presence of any outliers in our dataset. Seaborn, a statistical plotting library built on top of Matplotlib, provides a suite of tools that makes visualizing distributions a breeze.

The various plots and tools under Seaborn's distribution utilities can:

  • Examine the distribution of a dataset.
  • Visualize the relationship between multiple variables.
  • Display the underlying probability distributions of datasets.

Using Seaborn to create distribution plots ensures that the viewer can get a comprehensive view of the data's distribution and its characteristics.

Taak

Swipe to start coding

Using Seaborn, visualize the distribution of a dataset:

  1. Plot a univariate distribution of data using a histogram and overlay it with a kernel density estimate (KDE).
  2. Visualize the bivariate distribution between two variables using a scatter plot and include a KDE plot to see the data's density.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 5. Hoofdstuk 1
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt