Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge 1: Data Scaling | Scikit-learn
Data Science Interview Challenge
course content

Cursusinhoud

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 1: Data Scaling

In the realm of data science and machine learning, data scaling is a critical preprocessing step. It primarily involves transforming the features (variables) of the dataset to a standard scale, ensuring that each feature has a similar scale or range. This is especially significant for algorithms that rely on distances or gradients, as it ensures that all features contribute equally to the outcome and the algorithm converges more efficiently.

Here's a demonstration of how the scaling utilities from scikit-learn modify the data distribution:

Taak

Swipe to start coding

In this task, you will be working with the popular Iris dataset. Your objective is to apply two types of scalers to the data and compare the resulting datasets.

  1. Use the StandardScaler class to standardize the dataset, which means transforming it to have a mean of 0 and a standard deviation of 1.
  2. Use the MinMaxScaler class to rescale the dataset. Ensure that after scaling, the feature values lie between -1 and 1.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 7. Hoofdstuk 1
toggle bottom row

book
Challenge 1: Data Scaling

In the realm of data science and machine learning, data scaling is a critical preprocessing step. It primarily involves transforming the features (variables) of the dataset to a standard scale, ensuring that each feature has a similar scale or range. This is especially significant for algorithms that rely on distances or gradients, as it ensures that all features contribute equally to the outcome and the algorithm converges more efficiently.

Here's a demonstration of how the scaling utilities from scikit-learn modify the data distribution:

Taak

Swipe to start coding

In this task, you will be working with the popular Iris dataset. Your objective is to apply two types of scalers to the data and compare the resulting datasets.

  1. Use the StandardScaler class to standardize the dataset, which means transforming it to have a mean of 0 and a standard deviation of 1.
  2. Use the MinMaxScaler class to rescale the dataset. Ensure that after scaling, the feature values lie between -1 and 1.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 7. Hoofdstuk 1
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt