Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge 4: Altering DataFrame | Pandas
Data Science Interview Challenge
course content

Cursusinhoud

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 4: Altering DataFrame

Pandas provides a plethora of tools that allow for easy modification of both data and structure of DataFrames. These capabilities are essential because:

  • Data Cleaning: Real-world datasets are often messy. The ability to transform and clean data ensures its readiness for analysis.
  • Versatility: Frequently, the structure of a dataset may not align with the requirements of a given task. Being able to reshape data can be a lifesaver.
  • Efficiency: Direct modifications to DataFrames, as opposed to creating new ones, can save memory and improve performance.

Getting familiar with the techniques to alter data and the structure of DataFrames is a key step in becoming proficient with Pandas.

Taak

Swipe to start coding

Harness the power of Pandas to alter data and the structure of DataFrames:

  1. Add a new column to a DataFrame with values Engineer, Doctor and Artist.
  2. Rename columns in a DataFrame. Change the Name column into Full Name and the Age column into Age (years).
  3. Drop a column City from a DataFrame.
  4. Sort a DataFrame based on the Age column (descending).

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 4
toggle bottom row

book
Challenge 4: Altering DataFrame

Pandas provides a plethora of tools that allow for easy modification of both data and structure of DataFrames. These capabilities are essential because:

  • Data Cleaning: Real-world datasets are often messy. The ability to transform and clean data ensures its readiness for analysis.
  • Versatility: Frequently, the structure of a dataset may not align with the requirements of a given task. Being able to reshape data can be a lifesaver.
  • Efficiency: Direct modifications to DataFrames, as opposed to creating new ones, can save memory and improve performance.

Getting familiar with the techniques to alter data and the structure of DataFrames is a key step in becoming proficient with Pandas.

Taak

Swipe to start coding

Harness the power of Pandas to alter data and the structure of DataFrames:

  1. Add a new column to a DataFrame with values Engineer, Doctor and Artist.
  2. Rename columns in a DataFrame. Change the Name column into Full Name and the Age column into Age (years).
  3. Drop a column City from a DataFrame.
  4. Sort a DataFrame based on the Age column (descending).

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 3. Hoofdstuk 4
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt