Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Uitdaging: Voorspellen van Spaartegroei | Verzamelingen en Reeksen
Wiskunde voor Data Science

bookUitdaging: Voorspellen van Spaartegroei

Taak

Swipe to start coding

Een financieel adviseur wil inschatten hoe het spaargeld van een cliënt in de loop van de tijd groeit wanneer de rente regelmatig wordt gekapitaliseerd. Dit type groei volgt een meetkundige rij, waarbij het spaargeld elke kapitalisatieperiode met een constante factor toeneemt.

Het totale spaargeld kan worden berekend met de formule voor samengestelde interest:

A=P(1+rn)ntA = P \left( 1 + \frac{r}{n} \right)^{n t}

Waarbij:

  • A — eindbedrag na toepassing van alle rente;
  • P — initiële inleg;
  • r — jaarlijkse rentevoet (als decimaal);
  • n — aantal kapitalisatieperioden per jaar;
  • t — tijd in jaren;

  1. Bereken het uiteindelijke spaarbedrag na 20 jaar met:
  • Initiële inleg: P=10000P = 10000.
  • Jaarlijkse rentevoet: r=0.08r = 0.08.
  • Maandelijkse kapitalisatie: n=12n = 12.
  • Periode: t=20t = 20.
  1. Bereken de totale verdiende rente door de initiële inleg af te trekken van het eindbedrag.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookUitdaging: Voorspellen van Spaartegroei

Veeg om het menu te tonen

Taak

Swipe to start coding

Een financieel adviseur wil inschatten hoe het spaargeld van een cliënt in de loop van de tijd groeit wanneer de rente regelmatig wordt gekapitaliseerd. Dit type groei volgt een meetkundige rij, waarbij het spaargeld elke kapitalisatieperiode met een constante factor toeneemt.

Het totale spaargeld kan worden berekend met de formule voor samengestelde interest:

A=P(1+rn)ntA = P \left( 1 + \frac{r}{n} \right)^{n t}

Waarbij:

  • A — eindbedrag na toepassing van alle rente;
  • P — initiële inleg;
  • r — jaarlijkse rentevoet (als decimaal);
  • n — aantal kapitalisatieperioden per jaar;
  • t — tijd in jaren;

  1. Bereken het uiteindelijke spaarbedrag na 20 jaar met:
  • Initiële inleg: P=10000P = 10000.
  • Jaarlijkse rentevoet: r=0.08r = 0.08.
  • Maandelijkse kapitalisatie: n=12n = 12.
  • Periode: t=20t = 20.
  1. Bereken de totale verdiende rente door de initiële inleg af te trekken van het eindbedrag.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 6
single

single

some-alt