Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Solving a Linear System with LU Decomposition | Linear Algebra Foundations
Mathematics for Data Science

bookChallenge: Solving a Linear System with LU Decomposition

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Taak

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 10
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Can you show me how to perform LU decomposition step by step?

How do I use forward and backward substitution after LU decomposition?

How can I compare my solution with numpy's built-in solver?

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Solving a Linear System with LU Decomposition

Veeg om het menu te tonen

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Taak

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

close

Awesome!

Completion rate improved to 1.89
Sectie 4. Hoofdstuk 10
single

single

some-alt