Dive Deeper into Visualization
Let's imagine that it is essential for you to sort out the user continued subscription after the trial period. Let's move to the dataset that we use, for example:
Look at the code:
12345678910import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv', index_col = 0) df = df.groupby(['plan', 'trial']).sum().reset_index() sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial') plt.show()
As you can see, we just add the hue parameter, which helps you sort out data by categories. For instance, here, hue = 'trial', the column 'trial' has two categories: True and False.
And here is the output:

Swipe to start coding
Visualize the sum of money you receive from users depending on their subscription plan. Take into account if the user continued the subscription after the trial period.
- Import the
seabornwith thesnsalias. - Import the
matplotlib.pyplotwith thepltalias. - Prepare data for visualization using the
.groupby()function:
- Extract columns
'plan', 'price', 'trial'for grouping - Group by column
'plan'and then by'trial'. - Calculate the
sumof all prices for eachplan. - Reset indices.
- Create the
barplotusing theseaborn:
- Use
dfas the data argument. - Use the
'plan'column for x-axis. - Use the
'price'column for y-axis. - Use the
'trial'column for hue variable.
- Display the plot.
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Vat dit hoofdstuk samen
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 2.08
Dive Deeper into Visualization
Veeg om het menu te tonen
Let's imagine that it is essential for you to sort out the user continued subscription after the trial period. Let's move to the dataset that we use, for example:
Look at the code:
12345678910import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/783d7288-e86b-4b89-9966-a2fe97995277/section_2_dataset_upd.csv', index_col = 0) df = df.groupby(['plan', 'trial']).sum().reset_index() sns.barplot(data = df, x = 'plan', y = 'price', hue = 'trial') plt.show()
As you can see, we just add the hue parameter, which helps you sort out data by categories. For instance, here, hue = 'trial', the column 'trial' has two categories: True and False.
And here is the output:

Swipe to start coding
Visualize the sum of money you receive from users depending on their subscription plan. Take into account if the user continued the subscription after the trial period.
- Import the
seabornwith thesnsalias. - Import the
matplotlib.pyplotwith thepltalias. - Prepare data for visualization using the
.groupby()function:
- Extract columns
'plan', 'price', 'trial'for grouping - Group by column
'plan'and then by'trial'. - Calculate the
sumof all prices for eachplan. - Reset indices.
- Create the
barplotusing theseaborn:
- Use
dfas the data argument. - Use the
'plan'column for x-axis. - Use the
'price'column for y-axis. - Use the
'trial'column for hue variable.
- Display the plot.
Oplossing
Bedankt voor je feedback!
single