Evaluation Before and After Calibration
Swipe to start coding
In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:
- Brier score
- Expected Calibration Error (ECE)
- Calibration curve points
You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.
Your goal:
-
Train a logistic regression classifier on the dataset.
-
Generate uncalibrated predicted probabilities.
-
Apply isotonic calibration using
CalibratedClassifierCV. -
Compute Brier score and a simple ECE metric before and after calibration.
-
Print the results as two values:
brier_before,brier_afterece_before,ece_after
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Geweldig!
Completion tarief verbeterd naar 6.67
Evaluation Before and After Calibration
Veeg om het menu te tonen
Swipe to start coding
In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:
- Brier score
- Expected Calibration Error (ECE)
- Calibration curve points
You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.
Your goal:
-
Train a logistic regression classifier on the dataset.
-
Generate uncalibrated predicted probabilities.
-
Apply isotonic calibration using
CalibratedClassifierCV. -
Compute Brier score and a simple ECE metric before and after calibration.
-
Print the results as two values:
brier_before,brier_afterece_before,ece_after
Oplossing
Bedankt voor je feedback!
single