Logical Indexing
Logical indexing allows you to filter rows of a data frame based on conditions. Instead of remembering row numbers, you specify logical expressions, and only rows where the condition is TRUE are returned.
Example
123456789name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") test <- data.frame(name, age, gender) # People older than 30 test[test$age > 30, ] # Males only test[test$gender == 'M', ]
The condition should be placed in the row index position inside square brackets ([condition, ]).
Swipe to start coding
Using the mtcars dataset, extract the following data:
- The cars that pass a quarter-mile in less than 16 seconds (
qseccolumn). - Cars with 6 cylinders (
cylcolumn).
Oplossing
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Geweldig!
Completion tarief verbeterd naar 2.27
Logical Indexing
Veeg om het menu te tonen
Logical indexing allows you to filter rows of a data frame based on conditions. Instead of remembering row numbers, you specify logical expressions, and only rows where the condition is TRUE are returned.
Example
123456789name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") test <- data.frame(name, age, gender) # People older than 30 test[test$age > 30, ] # Males only test[test$gender == 'M', ]
The condition should be placed in the row index position inside square brackets ([condition, ]).
Swipe to start coding
Using the mtcars dataset, extract the following data:
- The cars that pass a quarter-mile in less than 16 seconds (
qseccolumn). - Cars with 6 cylinders (
cylcolumn).
Oplossing
Bedankt voor je feedback!
single