Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Linear Algebra Operations | Getting into NumPy Basics
Getting into NumPy Basics
course content

Cursusinhoud

Getting into NumPy Basics

book
Linear Algebra Operations

NumPy offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:

  • dot(): Computes the dot product of two arrays;
  • transpose(): Transposes an array;
  • inv(): Computes the inverse of a matrix;
  • linalg.svd(): Performs the singular value decomposition of a matrix;
  • linalg.eig(): Determines the eigenvalues and eigenvectors of a matrix.
Taak

Swipe to start coding

  1. Compute the dot product of the arrays.
  2. Transpose the first array.
  3. Compute the inverse of the second array.

Oplossing

Mark tasks as Completed
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 5
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt