Grouping in Pandas
Grouping in pandas
involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.
To group a DataFrame in pandas
, use the .groupby()
method. This method accepts a column name or a list of column names and returns a groupby
object.
Here is an example:
# Grouping by 'column_name' and calculating the mean of each group
grouped_data = df.groupby('column_name').mean()
This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.
Swipe to start coding
- Group the
data
DataFrame by'DEPARTMENT_NAME'
and compute the mean, minimum, and maximum of the'MANAGER_ID'
column for each group.
Oplossing
Bedankt voor je feedback!
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Stel mij vragen over dit onderwerp
Vat dit hoofdstuk samen
Toon voorbeelden uit de praktijk
Awesome!
Completion rate improved to 14.29
Grouping in Pandas
Grouping in pandas
involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.
To group a DataFrame in pandas
, use the .groupby()
method. This method accepts a column name or a list of column names and returns a groupby
object.
Here is an example:
# Grouping by 'column_name' and calculating the mean of each group
grouped_data = df.groupby('column_name').mean()
This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.
Swipe to start coding
- Group the
data
DataFrame by'DEPARTMENT_NAME'
and compute the mean, minimum, and maximum of the'MANAGER_ID'
column for each group.
Oplossing
Bedankt voor je feedback!