Problem B. Minimum path
Let's traverse mat
and update values in it: now mat[i][j]
contains the path cost to cell [i, j]
. How to reach that? You can get to the mat[i][j]
from either mat[i-1][j]
or mat[i][j-1]
cell, that also contain the path cost to themselves. Thus, mat[i][j]
can be updated as:
mat[i][j] += min(mat[i-1][j], mat[i][j-1])
,
since you choose the minumum cost path between these two.
Note that some cells can be reached only from left or right, for example, mat[0][j]
(only from mat[0][j-1]
).
So, the goal is to traverse mat
and update its values; after that, return path cost at mat[-1][-1]
.
123456789101112131415161718def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Vat dit hoofdstuk samen
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 8.33
Problem B. Minimum path
Veeg om het menu te tonen
Let's traverse mat
and update values in it: now mat[i][j]
contains the path cost to cell [i, j]
. How to reach that? You can get to the mat[i][j]
from either mat[i-1][j]
or mat[i][j-1]
cell, that also contain the path cost to themselves. Thus, mat[i][j]
can be updated as:
mat[i][j] += min(mat[i-1][j], mat[i][j-1])
,
since you choose the minumum cost path between these two.
Note that some cells can be reached only from left or right, for example, mat[0][j]
(only from mat[0][j-1]
).
So, the goal is to traverse mat
and update its values; after that, return path cost at mat[-1][-1]
.
123456789101112131415161718def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
Bedankt voor je feedback!
Awesome!
Completion rate improved to 8.33single