Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer What is DP | Intro to Dynamic Programming
Dynamic Programming

Veeg om het menu te tonen

book
What is DP

Dynamic programming is a programming paradigm for a massive class of problems. It solves the problem by partitioning it into smaller subproblems and solving it to avoid double computing the same results. Thus, the optimal solution of the main problem depends on the optimal solution of its subproblems.

The simplest (even classic) example is solving the Fibonacci Numbers problem - find the n-th Fibonacci number. As you know, each next Fibonacci number is a sum of the previous two Fibonacci numbers. So, if we have some function fib(n) that returns n-th Fibonacci numbers, we can implement it like this:

12
def fib(n): return fib(n-1) + fib(n-2)
copy

Thus, to solve the problem of the n-th Fibonacci number, you should solve the fib(n-1) and fib(n-2) subproblems first. But we can solve both of these subproblems in the same way.

You can note that this recursion has no bottom yet, so we have to add the stop condition:

1234
def fib(n): if n <= 1: # Bottom return n return fib(n-1) + fib(n-2)
copy

You'll find some info about the main DP properties in the next two chapters.

Taak

Swipe to start coding

  1. Following the example, implement the function fib(n).
  2. Make function calls to check how it works.

The function calls are already in the task code; do not change them. Edit the fib(n) function only.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 1
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?

Vraag AI

expand
ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

book
What is DP

Dynamic programming is a programming paradigm for a massive class of problems. It solves the problem by partitioning it into smaller subproblems and solving it to avoid double computing the same results. Thus, the optimal solution of the main problem depends on the optimal solution of its subproblems.

The simplest (even classic) example is solving the Fibonacci Numbers problem - find the n-th Fibonacci number. As you know, each next Fibonacci number is a sum of the previous two Fibonacci numbers. So, if we have some function fib(n) that returns n-th Fibonacci numbers, we can implement it like this:

12
def fib(n): return fib(n-1) + fib(n-2)
copy

Thus, to solve the problem of the n-th Fibonacci number, you should solve the fib(n-1) and fib(n-2) subproblems first. But we can solve both of these subproblems in the same way.

You can note that this recursion has no bottom yet, so we have to add the stop condition:

1234
def fib(n): if n <= 1: # Bottom return n return fib(n-1) + fib(n-2)
copy

You'll find some info about the main DP properties in the next two chapters.

Taak

Swipe to start coding

  1. Following the example, implement the function fib(n).
  2. Make function calls to check how it works.

The function calls are already in the task code; do not change them. Edit the fib(n) function only.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 1
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt