Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Multiplication Rule for Independent Events | Statistical Dependence
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Probability Theory Update

bookMultiplication Rule for Independent Events

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 5

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

Suggested prompts:

Stel mij vragen over dit onderwerp

Vat dit hoofdstuk samen

Toon voorbeelden uit de praktijk

bookMultiplication Rule for Independent Events

Veeg om het menu te tonen

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 5
some-alt