Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Poisson Distribution 3/3 | Distributions
Probability Theory Update

Veeg om het menu te tonen

book
Poisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 5. Hoofdstuk 3
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

Awesome!

Completion rate improved to 3.7

book
Poisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

close

Awesome!

Completion rate improved to 3.7

Veeg om het menu te tonen

some-alt