Standard Normal Distribution (Gaussian distribution) 1/2
What is it?
This is a continuous probability distribution for a real-valued random variable.
Key characteristics:
- The mean value or expectation is equal to 0.
- The standard deviation to 1.
- The shape is bell-curved.
- The distribution is symmetrical. Python realization:
We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal()
from the numpy
library with the parameters: loc
is the mean value and scale
is the standard deviation.
You can play with the distribution size and see how the distribution will be modified.
123456789import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
Bedankt voor je feedback!
single
Vraag AI
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Vat dit hoofdstuk samen
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.7
Standard Normal Distribution (Gaussian distribution) 1/2
Veeg om het menu te tonen
What is it?
This is a continuous probability distribution for a real-valued random variable.
Key characteristics:
- The mean value or expectation is equal to 0.
- The standard deviation to 1.
- The shape is bell-curved.
- The distribution is symmetrical. Python realization:
We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal()
from the numpy
library with the parameters: loc
is the mean value and scale
is the standard deviation.
You can play with the distribution size and see how the distribution will be modified.
123456789import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
Bedankt voor je feedback!
Awesome!
Completion rate improved to 3.7single