Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Cumulative Distribution Function (CDF) 2/2 | Probability Functions
Probability Theory Update

Veeg om het menu te tonen

book
Cumulative Distribution Function (CDF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that a random variable is equal to numbers over a range.

Formula:

P(a < X <= b) = Fx(a) - Fx(b)

  • P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].

  • Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.

  • Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.

Example:

Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819
# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 5
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

Awesome!

Completion rate improved to 3.7

book
Cumulative Distribution Function (CDF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that a random variable is equal to numbers over a range.

Formula:

P(a < X <= b) = Fx(a) - Fx(b)

  • P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].

  • Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.

  • Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.

Example:

Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819
# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

close

Awesome!

Completion rate improved to 3.7

Veeg om het menu te tonen

some-alt