Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: LOF in Practice | Density-Based Methods
Quizzes & Challenges
Quizzes
Challenges
/
Outlier and Novelty Detection in Python

bookChallenge: LOF in Practice

Taak

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 4
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

Awesome!

Completion rate improved to 4.55

bookChallenge: LOF in Practice

Veeg om het menu te tonen

Taak

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 4. Hoofdstuk 4
single

single

some-alt