Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Compare Ridge and Lasso on Real Data | Regularization Fundamentals
Feature Selection and Regularization Techniques

bookChallenge: Compare Ridge and Lasso on Real Data

Oppgave

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you explain that in more detail?

What are the main benefits or drawbacks?

Can you provide an example?

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Compare Ridge and Lasso on Real Data

Sveip for å vise menyen

Oppgave

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
single

single

some-alt