Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Noise Reduction and Smoothing | Image Processing with OpenCV
Computer Vision Essentials

Sveip for å vise menyen

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

cv2.GaussianBlur function applies a Gaussian blur, which smooths the image by averaging pixel values using a Gaussian kernel (a weighted average that gives more importance to central pixels):

  • cv2.GaussianBlur(src, ksize, sigmaX):

    • src: the source image to be blurred;

    • ksize: kernel size in the format (width, height), both values must be odd (e.g., (5, 5));

    • sigmaX: standard deviation in the X direction; controls the amount of blur.

  • The function reduces image noise and detail by convolving the image with a Gaussian function, which is useful in tasks like edge detection or pre-processing before thresholding.

Median Blurring (Salt-and-Pepper Noise Removal)

cv2.medianBlur function applies a median filter, which replaces each pixel value with the median value of the neighboring pixels in the kernel window:

  • cv2.medianBlur(src, ksize):

    • src: the source image to be filtered;

    • ksize: size of the square kernel (must be an odd integer, e.g., 3, 5, 7).

  • The median blur is especially effective at removing salt-and-pepper noise, as it preserves edges while eliminating isolated noisy pixels.

Oppgave

Swipe to start coding

You are given the image variable of the noisy image of the puppy: noisy puppy

  • Apply Gaussian Blur and store result in gaussian_blurred variable;
  • Apply Gaussian Blur and store result in median_blurred variable.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
Vi beklager at noe gikk galt. Hva skjedde?

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

cv2.GaussianBlur function applies a Gaussian blur, which smooths the image by averaging pixel values using a Gaussian kernel (a weighted average that gives more importance to central pixels):

  • cv2.GaussianBlur(src, ksize, sigmaX):

    • src: the source image to be blurred;

    • ksize: kernel size in the format (width, height), both values must be odd (e.g., (5, 5));

    • sigmaX: standard deviation in the X direction; controls the amount of blur.

  • The function reduces image noise and detail by convolving the image with a Gaussian function, which is useful in tasks like edge detection or pre-processing before thresholding.

Median Blurring (Salt-and-Pepper Noise Removal)

cv2.medianBlur function applies a median filter, which replaces each pixel value with the median value of the neighboring pixels in the kernel window:

  • cv2.medianBlur(src, ksize):

    • src: the source image to be filtered;

    • ksize: size of the square kernel (must be an odd integer, e.g., 3, 5, 7).

  • The median blur is especially effective at removing salt-and-pepper noise, as it preserves edges while eliminating isolated noisy pixels.

Oppgave

Swipe to start coding

You are given the image variable of the noisy image of the puppy: noisy puppy

  • Apply Gaussian Blur and store result in gaussian_blurred variable;
  • Apply Gaussian Blur and store result in median_blurred variable.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt