Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge | Simple Linear Regression
Linear Regression for ML

Sveip for å vise menyen

book
Challenge

Let's build a real-world example regression model. We have a file, houses_simple.csv, that holds information about housing prices with its area as a feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') print(df.head())
copy

Let's assign variables and visualize our dataset!

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') X = df[['square_feet']] y = df['price'] plt.scatter(X, y, alpha=0.5)
copy

In the example with a person's height, it was much easier to imagine a line fitting the data well.
But now our data has much more variance since the target highly depends on many other things like age, location, interior, etc.
Anyway, the task is to build the line that best fits the data we have; it will at least show the trend. The LinearRegression class should be used for that. Soon we will learn how to add more features to improve the predictions!

Oppgave

Swipe to start coding

  1. Import the LinearRegression class from sklearn.linear_model.
  2. Assign the 'square_feet' column to X.
    Make sure you assign pandas DataFrame with a single column instead of pandas Series (refer to hint if needed).
  3. Initialize the LinearRegression model.
  4. Train the model.
  5. Predict the target for the X_new array.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
Vi beklager at noe gikk galt. Hva skjedde?

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Challenge

Let's build a real-world example regression model. We have a file, houses_simple.csv, that holds information about housing prices with its area as a feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') print(df.head())
copy

Let's assign variables and visualize our dataset!

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') X = df[['square_feet']] y = df['price'] plt.scatter(X, y, alpha=0.5)
copy

In the example with a person's height, it was much easier to imagine a line fitting the data well.
But now our data has much more variance since the target highly depends on many other things like age, location, interior, etc.
Anyway, the task is to build the line that best fits the data we have; it will at least show the trend. The LinearRegression class should be used for that. Soon we will learn how to add more features to improve the predictions!

Oppgave

Swipe to start coding

  1. Import the LinearRegression class from sklearn.linear_model.
  2. Assign the 'square_feet' column to X.
    Make sure you assign pandas DataFrame with a single column instead of pandas Series (refer to hint if needed).
  3. Initialize the LinearRegression model.
  4. Train the model.
  5. Predict the target for the X_new array.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt