Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Transforming Collections | Functional Utilities in Practice
C++ Functional Utilities

bookTransforming Collections

When you need to process or modify every element in a collection, transformation patterns offer a concise and efficient way to express your intent. Instead of writing explicit loops, you can use standard algorithms like std::transform combined with lambda expressions to apply operations to each element. This approach makes your code more readable, reduces boilerplate, and helps prevent errors. By separating the "what" (the transformation logic) from the "how" (iteration), you gain flexibility and clarity, especially when working with large or complex collections. Transformations are fundamental in functional programming and are widely used for tasks such as mapping, normalization, or preparing data for further processing.

main.cpp

main.cpp

copy
12345678910111213141516171819202122
#include <iostream> #include <vector> #include <algorithm> int main() { std::vector<int> numbers{1, 2, 3, 4, 5}; std::vector<int> squared(numbers.size()); std::transform( numbers.begin(), numbers.end(), squared.begin(), [](int x) { return x * x; } ); std::cout << "Squared numbers: "; for (const auto& n : squared) { std::cout << n << " "; } std::cout << std::endl; return 0; }
question mark

Which STL algorithm is commonly used with lambdas to apply a transformation to each element in a collection?

Select the correct answer

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 4. Kapittel 1

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you give an example of using std::transform with a lambda?

What are some common use cases for transformation patterns?

How do transformation patterns compare to traditional loops in terms of performance?

bookTransforming Collections

Sveip for å vise menyen

When you need to process or modify every element in a collection, transformation patterns offer a concise and efficient way to express your intent. Instead of writing explicit loops, you can use standard algorithms like std::transform combined with lambda expressions to apply operations to each element. This approach makes your code more readable, reduces boilerplate, and helps prevent errors. By separating the "what" (the transformation logic) from the "how" (iteration), you gain flexibility and clarity, especially when working with large or complex collections. Transformations are fundamental in functional programming and are widely used for tasks such as mapping, normalization, or preparing data for further processing.

main.cpp

main.cpp

copy
12345678910111213141516171819202122
#include <iostream> #include <vector> #include <algorithm> int main() { std::vector<int> numbers{1, 2, 3, 4, 5}; std::vector<int> squared(numbers.size()); std::transform( numbers.begin(), numbers.end(), squared.begin(), [](int x) { return x * x; } ); std::cout << "Squared numbers: "; for (const auto& n : squared) { std::cout << n << " "; } std::cout << std::endl; return 0; }
question mark

Which STL algorithm is commonly used with lambdas to apply a transformation to each element in a collection?

Select the correct answer

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 4. Kapittel 1
some-alt